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CHAPTER 1  

 

INTRODUCTION 

1.1 A review of topology optimization 

Topology optimization is a relatively new and speedily developing field of 

structural mechanics. It has become a powerful tool in computer-aided engineering, for 

the reason that it helps designers to gain insight into alternative topological possibilities 

other than size and shape. In the past three decades, considerable efforts have been made 

toward the development of this field. Although the basic principles of topology 

optimization have been known for centuries, the first systematic contribution to this field 

is regarded as the study of Michell (1904) in which an optimization resulting in thin-bar 

trusses with regard to weight was developed. Much later Prager and Rozvany (1976) 

solved a range of different topology optimization problems by analytical procedures 

based on optimality criteria.  

Two types of structure exist in structural topology optimization: discrete 

structures and continuum structures. The research on discrete structural topology 

optimization has been active for several decades and largely developed by Prager and 

Rozvany (1976). Since the implementation of discrete structural topology optimization is 

ongoing but not yet practicable, people commonly adopt continuous optimization 

strategies by which an optimization problem is solved over a set of finite elements 

obtained from meshing of the continuum structural domain. This research has been 

extremely active since the publication of the paper by Bendsøe and Kikuchi (1988). In 

continuum structural topology optimization (CSTO), the shape of structural boundaries 

and the number of inner holes are optimized simultaneously with respect to one or more 

design objectives and constraints. 

In continuum structural topology optimization, one deals with a cloud of porous 

structural material distributed throughout the structural domain. Where the porosity 
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vanishes the material is solid, and where it tends to unity the material is void. To compute 

the effective properties for porous solid-void materials, homogenization theory was 

originally employed by Bendsøe and Kikuchi (1988) by treating the porous material as 

having periodic microstructures. Their homogenization approach to continuum structural 

topology optimization yielded a mathematically well-founded theory, where they 

simulated holes by allowing the stiffness of the composite tend to zero (Stainko, 2006). 

Nevertheless, a year later Bendsøe (1989) offered a different and simplified approach that 

deals with isotropic porous materials using approximate power laws to represent their 

stiffness as a function of the solid volume fraction. This microstructure-free approach is 

now called the SIMP method (Solid Isotropic Material with Penalization), and is widely 

adopted in the field.  

Sizing, shape and topology optimization problems address different aspects of the 

structural design problem (Bendsøe, 2003). Typically in a size optimization problem or a 

shape optimization problem, the aim is to find the optimal thickness or the optimum 

shape of a domain or member cross-section. In topology optimization the goal also 

includes finding optimal features such as the number and location and shape of holes, and 

the connectivity of the structural material domain. It is the most general area of structural 

optimization since it can determine where and where not to put material in a design 

space. Topology is a mathematical field which concerns the properties of geometric 

configurations that are unaltered by homeomorphic deformation or mappings (Swan, 

2013). An example of a homeomorphic mapping is shown in the Figure 1.1 at the left 

hand side; where the original and new object may have a different shape but the topology 

is same. For the non-homeomorphic transformation at the right hand side, the 

connectivity of the new object is altered by the newly generated holes which means that 

the topology of two objects is different. Two spaces are homeomorphic if one can be 

deformed into the other without cutting or gluing. In Hubbard’s book (1995) he 

mentioned that there is an old joke in mathematics field that goes “a topologist cannot tell 
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the difference between a coffee mug and a doughnut”. This sentence can be interpreted 

by assuming both donut and mug as pliable and can be sufficiently reshaped. Thus the 

transformation can easily be complete by reshaping one side of the donut into a dimple 

and remaining the other side of the donut unaltered which can be treated as the handle of 

the mug. During the transformation, the connectivity remains the same and each space is 

of only one hole. Figure 1.2 shows this homeomorphic transformation from a coffee mug 

to donut, while Figure 1.3 shows examples of size, shape and topology variations in 

mechanical systems. 

 

 

 

 

 

Figure 1. 1: Homeomorphic and non-homeomorphic transformation. 
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Figure 1. 2: An example of homeomorphic transformation (LucasVB, 2006). 

 

 

 

 

Figure 1. 3: Examples of mechanical system changes. (a) Size change where only a single 
dimension is varied. (b) Shape changes where the exterior boundary of the 
domain varies; and (c) Size, shape and topology changes. 
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1.2 Usage of CSTO in engineering disciplines 

Continuum structural topology optimization is today being successfully applied in 

a diverse array of engineering fields: automobile, aeronautical, micro-systems, structural 

and industrial. Since this method has been found to be very efficient for material layout 

optimization at the preliminary design stage, it has been applied for a number of 

performance objectives, such as: minimal compliance, tuned natural frequency period,  

maximized critical buckling load, tuned material properties in composites, and 

performance of continuous micro-mechanisms. By applying boundary conditions, such as 

sets of load and the degree of freedom, and adding constraint such as material occupancy, 

structural features that optimize the designed structural performance can be obtained 

(Figure 1.4) 

 

 

 

 

 

Figure 1. 4: Two examples of the topology optimization application in applied 
mechanics. (a) Optimal microstructure for minimization of effective thermal 
strain coefficient studied by Sigmund (1998).  (b) Optimal material layouts in 
a plate with respect to sound radiation at three significantly different 
frequencies (Xu, 2011).  

http://www.sciencedirect.com/science/article/pii/S0955799710001281
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CSTO is even being used in structural engineering practice by some of today’s 

leading structural engineering firms. To illustrate, Figure 1.5 shows an example, in which 

part of a complex structure was optimized with CSTO. With the load case and boundary 

conditions shown in (a), the topology optimization resulting design has more bracing 

members around the supports. Figures 1.5 (c) and Figure 1.6 show how a resulting design 

can be interpreted and achieved in built structures. 

 

 

 

 

Figure 1. 5: Example of topology optimization application in structure (Beghini, 2013). 
(a) Structural domain with loading and support conditions. (b) material layout 
distribution for minimal compliance under the load case shown; (c) Resulting 
engineering interpretation. 
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Figure 1. 6: Implementation of structural topology optimization results in architectural 
rendering by Skidmore, Owings & Merrill (SOM). (Beghini, 2013). 

 

 

 

1.3 Commercial availability 

Continuum structural topology optimization is now available in a number of 

commercial finite element analysis codes, such as Abaqus/ATOM, Ansys, Genesis, NX 

Topology optimization, Optistruct, and TOSCA, which provide convenience for 

engineers doing computer aided design. 
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To illustrate the general point about CSTO availability in commercial analysis 

codes, we consider the specific example of the Abaqus Topology Optimization Module 

(ATOM). It is able to solve a vast amount different material layout optimization 

problems, including those of structural, thermal, flow, electrical and magnetic natures. In 

general, there are three different approaches to optimizing a structure using Abaqus 

ATOM: 

1) Minimize strain energy, constrained with an upper bound on the relative volume 

fraction. 

2) Minimize the volume, constrained with an upper bound for displacement, moment of 

inertia, reaction forces, or rotation. 

3) Maximize Eigen-frequencies, constrained with a lower limit for volume or limits for 

other design responses that are independent of loads (as eigenvalue analysis are 

performed without external forces applied) (Johnsen, 2013). 

In the design results, Abaqus ATOM provides not only the material layout of the 

structure, but also the contours for structural displacements and stress, and cost function 

graphs with respect to many structural properties (Figure 1.7). 
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Figure 1. 7: Optimal result of a structure solved by Abaqus ATOM (Johnsen, 2013). 

 

 

 

 

1.4 Thesis Objectives  

A multilevel approach to CSTO is investigated in this thesis. This basic idea of 

the multilevel approach is to begin solving CSTO problems on relatively coarse meshes 

and to then continue the design process on a sequence of increasingly refined meshes. 

The multilevel approach provides the possibility of significant computational saving 

when applied together with analysis problem reduction techniques that intelligently 

excludes broad swaths of continuous void domains from the analysis problems. In the 

doctoral dissertation of Stainko (2006), a minimal compliance problem was treated in the 

framework of an adaptive multilevel approach with the computational time recorded. In 

addition, a fuzzy tolerance multilevel optimization approach was proposed in a study by 

Luo et al (2006) to overcome the drawbacks of traditional programming schemes.  

However not many researches have a time record of the optimization process, and no one 
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has reported research focused on the analysis time comparison between single level and 

multilevel problems.  

In this study, the multilevel approach is investigated in the context of optimizing a 

canyon bridge frame. To provide realistic design solutions for structures such as long-

span bridges, continuum topology optimization must deal with sparse structures on large, 

finely meshed domains which result in very high computational intensity. To alleviate 

this problem both a multi-level refinement method and an analysis problem size reduction 

technique are applied in the optimization process. The efficiency of the multilevel 

approach is studied by using analysis time as a judgment criterion. To make sure that 

design solutions obtained with the proposed methods are both constructible and 

convergent with mesh refinement, a perimeter control method is employed in this 

framework. A result of this study is analysis made on both structural layout and objective 

function history with respect to iteration counts.  
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CHAPTER 2 

 

METHODS 

2.1 Optimization procedure 

The optimization problem proceeds with the following steps: 

 

Step 1: At the outset of the optimization, a set of initial values are assigned to design 

variables. In a general optimization problem all values are set to 1 or 0 which means the 

whole design domain is solid or void at the very beginning. In a multilevel problem, the 

initial values are from the results of a lower level mesh.  

 

Step 2&3: Then with the initial values, finite element analysis is made. Evaluation of 

displacements and stress are made during this analysis. Calculation of constraint 

functions and objective functions is carried out.  

 

Step 4: The sensitivities of the constraints and the objective function to changes in the 

design variables are computed. 

 

Step 5: If the convergence criteria for the optimization algorithm are satisfied, then the 

optimum solution has been found and the solution process is terminated. If not, the 

optimization would go to the next step. 

 

Step 6: A mathematical programming method, sequential linear programming SLP 

algorithms, is used to update the design variables. The problem goes back to step 2, and a 

new round of iteration starts. 

The whole procedure is depicted in Figure 2.1. 
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Figure 2. 1: Flowchart of the topology optimization procedure. 
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2.2 Formulation 

When a structure features a linear elastic response behavior, the expression 

between the applied external loads ext
f   and the resulting displacement field u  can be 

written as:   

 
ext  r 0 Ku f       (2.1) 

where K  represents the stiffness matrix of the structure. In this study, the single-

objective is minimizing the compliance of the structure subject to an upper bound C  on 

the volume of solid material in the structure (  0,1C  ) . Compliance M  measures the 

external work done on the structure. It is the sum of all the displacements at the points 

where the load is applied, weighted by the magnitude of the loading. Thus by using this 

objective, the problem minimizes the defection of the structure due to applied loads. In 

other words it maximizes the stiffness of the structure under a specific loading case, ext
f . 

xt1
M( , )

2

e u b f u       (2.2) 

Structural concept designs are encoded in the design vector b  which is a vector of 

continuous nodal variables, each on the  0,  1  interval.   Each nodal design variable 

represents the solid volume fraction at a node in the structural model. The stiffer the 

structural concept designs b , the smaller the objective function values M  will be. 

The generalized formulations for a minimum compliance problem involving both 

force and displacement loadings of a structure can be expressed as (Swan,2013): 

 

   int

E

1
min[M ( )]

2
g

ext

E
b

E

,


   u b f u f g     (2.3) 
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Such that 

 r , u b 0        (2.4) 

   A

A

N A  XX      (2.5) 

1
 Ω 0d C

V
        (2.6) 

l i ub b b         (2.7) 

Above, 0 lb  and 1 ub   are the lower and upper bound of each design variable ib  ; int

Ef  

represents an internal force at a node E where a displacement loading Eg is applied; r  

denotes the residual of the force-balance structural equilibrium. Since the structure is in a 

state of minimum potential energy, the equality constraint is r 0  ;   denotes the solid 

volume fraction field in the structural domain.  

 

2.3 Boundary value problems 

2.3.1 Static admissibility conditions 

In a standard elastostatic boundary value problem in solid mechanics, each point 

in the structural domain Ω satisfies the local equilibrium condition: 

  ij,i j  0           (2.8) 

Here 
ij   is the local Cauchy stress,   is the local mass density, and 

j   represents a 

vector of body force. There are two different regions for the boundary of Ω . One is the 
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boundary  Γh where surface traction h  applied , and the other is the boundary Γg
 where 

prescribed displacements g  are applied. From equation (2.8), we have, 

 ij,i

Ω

  0j ju d          (2.9) 

where 
ju  denotes the continuous variational displacement field. From vector calculus, 

and integration by parts, the first term in equation (2.9) can be expressed as: 

   

ij,i j j ij ijj

Ω Γ Ω

   Γ Ω 0u d h u d d              (2.10) 

Substituting of equation (2.10) into equation (2.9), leads to the following expression 

which equates internal virtual work to external virtual work. 

     

ij ij i j j j

Ω Γ Ω

Ω Γ    Ωh u d u dd              (2.11) 

int extW W           

2.3.2 Potential energy 

 

The infinitesimal elastic strains related to displacements can be expressed as: 

   ij i,j j,i

1
  

2
u u         (2.12) 

When the material obeys a linear elastic constitutive law, the resulting stress is: 



www.manaraa.com

16 

 

 

 

ij ijkl klE         (2.13) 

The strain energy density R at a point in the structural domain is: 

 
1

R :
2

 σ ε        (2.14) 

If R  is the quadratic strain energy function for a linear elastic solid, it can be expressed 

as: 

ij ijkl kl

1
R

2
E        (2.15) 

Taking the derivative of 𝑅 with respect to ε , yields the stress which is the gradient of the 

strain energy. 

ij ijkl kl

ij

R
E 




 


      (2.16) 

The differential of elastic strain energy can be written as:  

 ij j ij

ij

R
R i   




 


     (2.17) 

It follows that the internal virtual work in a system is the variation of the elastic strain 

energy:  

ij j

nt

Ω Ω

iW Ω R Ωi d d         (2.18) 
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Now taking a close look at the external virtual work, the term
j ju   denotes the 

body forces work contribution 

 Φ      γ u      (2.19) 

Φ   u      (2.20) 

 In a similar manner, 
i jh u  denotes the contribution of traction forces to external virtual 

work. 

   h u       (2.21) 

   h u        (2.22) 

Putting these two together, external virtual work can be expressed as: 

   

ext

Γ Ω

W Γ  Φ Ωd d  
 

   
 
     (2.23) 

The potential energy Π  of a body or system  is the sum of the elastic strain 

energy and the force potentials, and can be expressed as: 

     

Ω Γ Ω

Π   Ω Γ  Φ ΩRd d d           (2.24) 

     

Ω Γ Ω

Π Ω Γ Φ ΩRd d d             (2.25) 

     

ij ij i j j j

Ω Γ Ω

Π Ω Γ+ Ωh ud d u d     
 

  
 

       (2.26) 
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If a system is stationary with regard to Π  then Π 0   which corresponds to satisfaction 

of virtual work equation. 

       

2.4 Design domain discretization 

In a finite model, the structural domain Ω  is discretized into a number of non-

overlapping finite elements. 

i

i 1

Ω Ω
numel



      (2.27)                                                

where 𝑛𝑢𝑚𝑒𝑙 is the number of elements and Ωi  is the region of the thi  element in the 

model. The vertices of the elements are taken as the nodal points.  

The displacement field 
h

u  associated with the above discretization can be expressed by a 

finite dimensioned vector of unknowns: 

   h

1

=
numnp

i i

i

N


u X X d       (2.28) 

Here,  iN X  represents the shape or interpolation functions which in this particular 

study are 
0C   continuous and the first derivatives are piecewise continuous; d  is a 

displacement vector of dimension *numnp ndof in which numnp  is the number of nodes 

and ndof  is the number of degrees of freedom for each node. The infinitesimal strain at a 

given point in the body can be written as: 

 

 ij i, j ,

1

2

h h h

j iu u  
     (2.29) 
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Commonly in the finite element analysis, for the sake of convenience the strain and stress 

are expressed in vectors rather than matrices.  

11, 22, 33, 23, 13, 12=       ε ;  
11, 22, 33, 23, 13, 12=        σ . 

At a given point in the body, the strain and the variational strain can be written as 

a summation: 

   L L

L 1

numnp
h



 B dε X X      (2.30) 

 
 

 
g\

h

M M

M  




  B cε X X      (2.31) 

 

where Mc is the variational displacement vector at unrestrained node M.  LB X  denotes 

the strain displacement matrix associated with the thL  node and has the specific 

composition:   

,1

,2

,3

L

,3 ,2

,3 ,1

,2 ,1

0 0

0 0

0 0

0

0

0

N

N

N

N N

N N

N N

L

L

L

L L

L L

L L

 
 
 
 

  
 
 
 
 
 

B         (2.32) 

Substituting equations (2.28) and (2.31) into equation (2.10), yields: 
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{ / } Ω Γ Ω

    Ω N Γ  N Ω 0
g

M M M M M M

M

d d d
 




 
   

 
   c h c γ cσ B     (2.33) 

Since this equality must be satisfied for all real and bounded values of Mc  it follows that 

     

M M

Ω Γ Ω

   Ω N Γ  N ΩT

M d d d   h γB σ     (2.34) 

In equation (2.34) the left side is the internal force at the Mth  node, and the right hand 

side is the external force on the same node. 

ext=( ) ( )M int M
f f      (2.35) 

ext( ( =) )M M int Mr f f 0      (2.36) 

Equation (2.36) expresses a force equilibrium at the Mth  unrestrained node at the model. 

This equation can also be written more globally, for all nodes, as: 

int ext  r f f 0       (2.37) 

where r  is the global equilibrium residual of the structure. 

In computational models, the stress and strain can be expressed in a condensed 

vector form as noted. It follows that the elasticity tensor will take the form of a 

symmetric 6 6  matrix. Thus, equation (2.13): 
ij ijkl klE    can be condensed to  

i j jiE       (2.38) 

When substituted into equation (2.34),  
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for  \
g

M    

   

Ω Γ Ω

Ω N Γ N ΩT

M d d d    B B d h γE     (2.39) 

Furthermore, 

  gg\

L E E

L E

L

  

     B d B d B g     (2.40) 

 

2.5 Interpolation of design variables 

There are a number of interpolation function spaces for design variables and 

displacements fields to choose from when implementing continuum structural topology 

optimization formulations. Q4/U is a popular implementation with nodal displacements 

interpolated using the bilinear quadrilateral element shape functions, and the design 

variables piecewise uniform on the element domains. However, for the design variable 

fields this implementation does not ensure 
0C  continuity, and for compliance 

minimization problems with the Q4/U implementation, checkerboard layout patterns 

frequently occur for the reason that the solid and void material design turns out to be 

artificially stiff (Diaz and Sigmund 1995). An older but effective method to eliminate 

checker boarding with Q4/U formulation is the spatial filtering (Sigmund O, Petersson J 

1998; Swan and Kosaka 1997) of design variables together with penalized mixing rules. 

The spatial filtering renders checker boarding regions into grey mixtures which are very 

compliant with penalized mixing rules. With checkerboard solutions no longer featuring 

artificially high stiffness, they are no longer obtained by the optimizer seeking low 

compliance solutions. 
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Figure 2. 2: Eight possibilities for two-dimensional element-wised interpolation of 
displacement fields and design variable fields (Rahmatalla and Swan 2004) 

 

 

 

New interpolation combinations have been explored in more recent studies, such 

as the Q4/Q4M implementation (modified Q4/Q4 implementation) (Paulino, Le 2008). 

This approach uses a regular Q4 element for the displacement field and four nodes 

located at midpoints of the element edges to interpret the design variable field. Together 

with the CAMD approach (Matsui and Terada, 2004) and internal averaging technique, 
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the Q4/Q4M implementation has been shown to provide a high resolution without 

increasing mesh refinement and also final designs without any apparent numerical 

instabilities. 

 

 

 

 

Figure 2. 3: Q4/Q4M element-wise interpolation of displacements and design variables 
(Paulino, Le 2008) 

      

 

 

In this study, the Q4/Q4 implementation is used, with both displacements and 

design variables being associated with the same nodes and the same nodal interpolation 

functions. Accordingly, the solid volume fraction field within the model domain takes the 

following form: 
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   A

1

N
nump

A

A

 


  XX        (2.41)  

 Where AN  is the thA   nodal interpolation function and   A  denotes the solid nodal 

volume fraction of at node A. Physically,   X  is the fraction of an infinitesimal volume 

surrounding point X  occupied by solid material.  

Although Q4/Q4 design formulation is able to ensure 
0C   continuity of design 

variables, it can still yield designs with numerical instabilities. This problem is well 

represented in the MBB beam problem (Rahmatalla and Swan 2004). In Figure 2.4, the 

material layout shows apparently “layering” and “islanding” of black and white regions 

inside the beam, which would be difficult to interpret from a design perspective and also 

have a bad effect on the convergence of the design solutions. Perimeter constraints are 

utilized in this work to help alleviate these problems. 

 

 

 

 

Figure 2. 4: A MBB beam problem designs achieved with the Q4/Q4 formulation that 
features “layering” and “islanding” (Rahmatalla and Swan 2004) 
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2.6 Mixing Rule 

Generally in a design domain Ω , each single element contains a mixture of two 

materials, and so a constitutive relationship between strain and stress for this mixture is 

needed. It is assumed in this study that both the solid material A and the void material B 

feature linear elastic material behaviors.  

A

A Aσ E ε ;  
B B

B σ E ε      (2.42) 

Several methods can be used obtain effective elastic properties E for a mixture element 

relating the effective stress A B BA σ σ σ  to the effective strain A B BA ε ε ε  . The 

Voigt (isostrain) rule of mixtures assumes that B=Aε ε  and yields that: 

*( )Voigt A B

A B  E E E      (2.43) 

Alternatively, the isostress Reuss rule of mixtures assumes that B=Aσ σ  and yields that: 

* 1 1 1( ) [ ( ) ( ) ]Reuss A B

A B   E E E          (2.44) 

Usually the Reuss rule is used for the case that the moduli of two materials are fairly 

close to each other. Otherwise, this rule would experience a discontinuity at 1A    when         

  A
E ≫ B

E . To address this problem, a hybrid Voigt-Reuss mixing rules is used: 

 * * *( ) ( ) 1 ( )hybrid Voigt Reuss   E E E       (2.45) 

with hybridizing parameter  0,1  .  

In this study, the power law mixing rule which is also called SIMP method (Solid 

Isotropic Material with Penalization) is used. The effective stiffness for this method is:  
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 * 1p A p B

A A   E E E     (2.46) 

where the mixing rule parameter  1,4p . When 1p   , SIMP recovers the Voigt mixing 

rule which does not penalize the mixtures. In this case, it yields a convex compliance 

functional so that there is only one solution for the problem. However, the design result 

may seem very “grey”. And thus be difficult to interpret . With 4p  , the optimization 

problem is generally not convex and the objective function value, and several local 

solutions could exist, though the design result seems very “black and white” which means 

that the region would be either solid or void. In this study, the power law mixing rule is 

typically used with a parameter 2.5p   in all computations.  

 

2.7 Mathematical programming method 

During the optimization process, mathematical programming is employed to 

minimize the objective function while satisfying the constraints. There are several 

choices for the mathematical programming method, such as Sequential Linear 

Programming (SLP), Sequential Quadratic Programming (SQP), and the Method of 

Moving Asymptotes (MMA). Sequential linear programming algorithms (SLP), have 

been employed successfully in numerous prior applications of CSTO and are thus used in 

this study. SLP is efficient for solving large nonlinear problems since it does not require 

second derivative information, and is the simplest convex approximation approach for a 

structural optimization problem with many simple constraints. This method consists of 

sequentially solving a series of linear sub-problems obtained by writing linear Taylor 

series expansions for the objective and constraint functions (Arora, 2012).  

The sequential linear programming algorithm used in this study can be stated as 

follows (Mijar, 1997): 
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Step 1: Set iteration number to 0k  . Initialize a starting design 
 0

b  to 
 k

b  and select 

proper move limits M  and stopping criteria parameters 1  and 2  .  

Step 2: Evaluate both the objective  
( )

k
F b  and inequality constraint functions  

( )
k

G b  

and their gradients  
( )

k
F b  and  

( )
k

G b at thk iteration. 

Step 3: Solve the LP subproblem for 
 k

d . 

Minimize    
 

f F
k

 d   

Subject to              
   k k

   G d G     (2.47) 

M M   d  

where f  is the linearized change in the original cost function; d is the vector for search 

direction.  

Step 3: Use line search to find step size k  such that    k k

k b d , and check the decent 

condition: 0F  b . b  denotes the design change. k  represents step size and 
 k

d  is 

the search direction at the thk iteration.  

Step 4: Check for the convergence.  

 k

1V       (2.48) 

2 b       (2.49) 

where 
 k

V  is the maximum constraint violation. If convergence, problem stops. 

Step 5:  Update the design vector 
     k+1 k k

= +b b b and update iteration counter 1k k  . 

Return to step 2. 

 

2.8 Numerical instabilities and perimeter constraint  

Although the development of topology optimization has been significant in recent 

years, there still exist quite a few problems such as numerical instabilities that must be 
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handled carefully. Numerical instabilities, including checkerboards, mesh-dependence, 

and local minima, frequently appear in applications of CSTO. Local minima refers to the 

problem of obtaining different solutions when using different algorithmic parameters. In 

a stiffness topology optimization, checkerboarding  happens when the process results in a 

checkerboard-like arrangement of material which is region with alternating solid and void 

elements (Figure 2.5). This arrangement can make the structure perform of a high 

artificial stiffness, but it makes shape extraction of structures difficult and the optimal 

structure hard to manufacture as well.  

 

 

 

 

Figure 2. 5: Example of checkerboard problem (Li et al, 2000). 

 

 

 

http://www.emeraldinsight.com/search.htm?ct=all&st1=Qing+Li&fd1=aut
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Mesh-dependency is another numerical instability in topology optimization, and it 

occurs when the continuum topology solution obtained does not converge with mesh 

refinement. Typically with mesh dependency as the mesh is refined, designs with 

increasingly intricate details and thus increasing perimeter occur. To illustrate the concept 

of perimeter, consider Figure 2.6 in which a single element is refined into four elements 

with a perimeter increasing from 8b to 16b.  

 

 

 

 

 

Figure 2. 6: Illustration of perimeter increasing: single element mesh refinement. 

 

 

 

The perimeter constraint method, introduced by Haber et al (1996), is one of the 

most effective techniques to make refined continuum topology designs converge and to 
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alleviate checkerboard patterns as well. When refining a two dimension model into a 

finer mesh within a given volume, one unit with material may be divided into several 

small units and this would lead to a significant increasing of the total perimeter(or surface 

area in a three dimension model) and unwanted sub-units. By setting a bound to the entire 

perimeter of the solid material, this method can effectively restrict the fineness of the 

design. By introducing a sufficiently tight perimeter constraint into the problem, many 

sub-units would be eliminated.  

The mesh-dependency problem and perimeter constraint method are well shown 

in the study of Rahmatalla and Swan in Figure 2.7 which is the MBB beam compliance 

minimization problem solved with a material usage constraint 50% that of the envelope 

structural volume. A simply supported structural domain with a central point load applied 

has a length to height ratio of 6:1, shown in Figure 2.7 (a). Using the Q4/Q4 

implementation, the compliance minimization problem is solved with finite element 

model for the beam progressively refined. The resulting layout solutions shown in Figure 

2.7 (b) – (d) displays increasing complexity with mesh refinement. These refined meshes 

feature non-convergent grillage type design solutions. When the problem is solved with a 

perimeter constraint enforced, the designs are free of the mesh-dependency problem. 

Figure 2.7 (e)-(f) shows three resulting layouts with different level of meshes that are 

essentially identical. 
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Figure 2. 7:  The example of MBB beam design convergence with mesh refinement 
(Rahmatalla, 2004). Designs (b), (c) and (d) show lack of convergence as 
computational mesh is refined with or without perimeter constraint. When 
perimeter constraints are imposed, the design solutions (e), (f), and (g) are 
clearly convergent with mesh refinement. 
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  CHAPTER 3  

 

MULTILEVEL ALGORITHM 

                       

The continuum structural topology optimization process requires effort to 

determine where to take out material and where to place material, especially in very fine 

mesh problems. It is undeniable that the initial starting design has a significant influence 

on the computational costs and the analysis time. Here a helpful technique a multilevel 

algorithm is introduced. It can save computational costs and improve the problem solving 

efficiency. This algorithm is achieved by firstly solving the problem on a coarse mesh to 

get a coarse material layout design with cheap computational costs. Then this coarse 

design is used as the initial starting design on a finer mesh in next level optimization 

problem. The steps may repeat several times until a desirable optimal design is achieved. 

By using multilevel techniques, unnecessary and expensive iterative computations on 

very fine meshes are avoided; which saves considerable analysis time. 

In this chapter, three levels of a canyon bridge problem are solved in both 

multilevel cases and as single level cases. The total solving time is recorded for both 

cases to confirm the efficiency of multilevel techniques. Objective function graphs 

respect to iteration number are discussed. 

 

3.1 Reduction Method 

In solving bridge design problem, one quickly find that long span bridges are very 

sparse structures in the sense that their volume of structural material relative to the 

bounding volume of the bridge is very small. Especially in large-scale civil engineering 

structures such as long-span bridges and transmission towers, the results are 

characteristically very sparse with the volume of material that comprises the structural 

system constituting a very small fraction of the structure’s total envelope volume. For a 
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sparse structure, the volume of material forming the structural system usually constitutes 

no more than 5%  of the total design volume. 

 The Golden Gate Bridge in San Francisco is an example of a very the long-span 

sparse structure. The bridge towers are 230 meters tall and 27 meters wide and the bridge 

length is approximately 1970 meters. A bounding box with dimensions 

230 27 1970m m m   has a volume of approximately 312,200,000m  (see dash box in 

Figures 3.1(b) ). The construction of the bridge is reported to have used up to 

75, 300, 000kg  of steel ( 39,600m ) and 3297, 000m  of concrete (Golden Gate Bridge, 

Highway and Transportation District, 2012). Thus an approximation of the structural 

volume occupancy can be calculated by dividing the volume sum of both steel and 

concrete by the box volume:  9, 600 297, 000 12, 200, 000=+ / 2.5% . The volume 

occupancy of the Golden Gate Bridge is thus approximately 2.5%  which is considerably 

smaller than that  of other structures, such as buildings. With this high sparsity these 

structures require fine computational meshes to represent the distribution of material and 

to calculate the structural response, leading to significant computational intensity.    
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Figure 3. 1: An example for sparse structure: The Golden Gate Bridge in San Francisco 
(Edginton, 2013) with a design volume box added. 

 

 

When dealing with continuum topology optimization of sparse structures using 

nonlinear analysis techniques (Rahmatalla and Swan, 2003) geometrical instability is one 
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of the critical problems that appears commonly. In a continuum structural system 

analysis, geometrical instability can lead to finite deformation which would cause 

numerical difficulties. The area with low stress or low sensitivity tends to come out with 

void and low-density elements. Deformations are quite large in this area due to the low 

stiffness of these void and low-density elements. Large-scale and sparse civil engineering 

structures results in large regions with finite deformation and structural instability. It is 

beneficial if the void and low-density elements in those regions can be removed 

temporarily from consideration during the structural analysis. This is called analysis 

problem size reduction and it is able to identify the void and low-density regions and 

remove temporarily the elements therein using an automated algorithm. It is noted that 

this robust algorithm only temporarily removes low-density regions as they are still 

present in the optimization problem and thus still able to become high density regions. 

The analysis problem size reduction technique can be described in three simple 

steps. 

1. The elements in the structure with solid volume fraction values equal to or less 

than 0.002 are determined as the "void" elements. 

2. The nodes which are only members of "void" elements are identified as "prime" 

nodes. 

3. The elements which are comprised only by "prime" nodes are marked as "prime" 

elements. Then such "prime" elements are removed during the structural analysis 

to avoid creating singularities of finite element equations (Figure 3.2). 
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Figure 3. 2: Graphical examples description of size reduction technique (Rahmatalla and 
Swan, 2003). 

 

 

Figure 3.2 are two examples demonstrating application of the size reduction 

method. Nodes with associated design variable values of zero are open circles; filled 

circles represent nodes with nonzero design variable values; nodes with open squares 

denote “prime” nodes whose degrees-of-freedom are restrained; elements with “S” are at 

least partially solid; elements with “V” are essentially devoid of solid material; elements 

with “P” are prime elements removed from consideration. Figures 3.2 (a) shows a mesh 

with designated nodes and elements while Figures 3.2 (b) shows the corresponding mesh 

used in analysis with solid elements blackened, prime elements removed, and void 

elements retained. Figures 3.2 (c) and (d) show another mesh with an isolated solid node 

surrounding by a region of void nodes, and the corresponding resulting mesh in which 
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there are no prime elements removed, thus avoiding formation of an island that is 

disconnected from the remainder of the mesh (Rahmatalla and Swan, 2003). 

To avoid numerical difficulties and speed up the optimization process, this 

method is typically employed in all the computations of this study. 

 

3.2 Problem Statement  

Compliance minimization problems are solved for optimal material distributions 

of a canyon bridge model subject to constraints on the volume of structural material. The 

design domain is a rectangular region 1000 meters long by 500 meters high. Half of the 

nodes along the left and right boundaries are fixed. The bridge is carrying a 10kPa  traffic 

load along the span at the deck level as shown in Figure 3.3. 

 

 

 

 

 

Figure 3. 3:  Design region and applied set of loads. 
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The structural optimization is performed in two dimensions within a 1000 meter 

by 500 meter design region, which has a gross volume of 500, 000
3m / m  . Since the 

structural form is desired to be sparse, the structural material volume constraint is set to 

less than or equal to 5%  of the bridge envelope volume ( 30.05*500,000m / m ) or 

325,000m / m . Assuming that the main material for the bridge construction is steel, then 

the weight of this bridge would be ( 3 30.078MN / m 25,000m / m )1950MN / m  . It is 

thus apparent that the weight of the bridge is very large compared to the traffic load 

10kPa 1000m=10MN / m . It has previously been studied (Swan et al, 1998) that if self-

weight is considered during the optimization process, it would be dominant and cause 

unsatisfactory concept designs. Therefore the self-weight is neglected during the 

topology optimization process and would be taken into consideration with traffic load 

only after the design structural forms are obtained.  

The canyon bridge problem is solved on three levels of meshing. Level 0 mesh 

consists of totally 1800 elements which is of 60 elements by 30 elements, and each higher 

level would double the elements on each side of rectangle domain. Thus, there are 7200 

elements for level 1 mesh and 28800 elements for level 2 mesh. The single element side 

length for three levels are 16.7 meters, 8.3 meters and 4.2 meters respectively. For the 

single level case all designs began with a solid structural domain. The multilevel case, 

only the level 0 problem began with a fully solid initial design, and the level 1 and level 2 

problems began with the design layout results from lower level problems. 
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Figure 3. 4: Single element size. (a) Level 0. (b) Level 1. (c) Level 2. 

 

 

 

Sequential linear programming is used to solve the optimization problem in 

mathematical iteration step. To analyze this canyon bridge problem considered as a 

quasi-static problem, and 2-D bilinear continuum quadrilateral element is used to solve 

momentum balance equation. The material steel is assumed to be isotropic with bulk 

modulus of 362 GPa and shear modulus of 118 GPa. In this topology optimization 

problem the model is treated as linear elastic.  

Since there is only external force applied but no applied displacement, the second 

terms in equation 2.3 (   int

E

1
min[M ( )]

2
g

ext

E
b

E

,


   u b f u f g ) vanishes, and the problem 

formulation can be stated as: 

 
1

min M ,
2

ext

b

 
 





u b f u      (3.1) 
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subject to the volume constraint,  

 1 solidg C 0         (3.2) 

Note   
solid

Ω

1
 Ωd

V
    

 

2.3 Sensitivity Analysis 

The design problem is considered as an optimization problem in the design 

variables only and the displacement field is regarded as a function of these design 

variables. Finding the derivatives of the displacements with respect to design variables is 

termed sensitivity analysis. Since it is a single-objective problem with a minimum 

compliance, from equation (3.1) the design gradient of the objective function is 

computed.  

1

2

ext
extdM d

d

 
   

 


 

f u
u f

b b b
      (3.3)

Since ext
f   is constant and independent of the design variables, the first term on the right 

hand side vanishes. 

  1
=

2

extdM

d






u
f

b b         (3.4)  

  ext,    r u b K u f 0      (3.5) 
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r K u
u K

b b b
       (3.6) 

1=
d d

d d

  
u K

K u
b b

     (3.7) 

Substitute (3.8) into (3.4), we have 

11
=

2

extdM d

d d

  
K

f K
b b

u      (3.8) 

1

2

dM d

d d
   

K
u u

b b
      (3.9) 

dM

d


 



int

a

f
u

b b
     (3.10) 

au  represents a vector of adjoint displacements which satisfies 
1

2

extM
   


 au f

u
K . 

Ω

Ωint T d f B σ      (3.11) 

 
Ω

Ωint T d f B E b ε        (3.12) 

where B  represents the strain displacement matrix and ε , σ are the strain and the stress 

which are both in a condensed form:

 11 22 33 23 13 12, , , , ,=      ε ;                σ . E  is the modulus 

which is condensed into a 6 6  matrix. Substitute (3.13) into (3.11), we have 

  = ΩTdM
d

d


 
 au E b ε

b b
B       (3.13) 
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= ΩTdM

d
d


 

a

E b
u ε

b b
B        (3.14) 

 
= Ω

dM
d

d


 

 a

E b
ε ε

b b
       (3.15) 

 

3.2 Resulting layouts  

As the meshes are refined, the constraints on the volume of structural material are 

gradually tightened as indicated in Table 3.1 where V denotes the design region. 

 

 

 

Table 3. 1: Volume restrictions on structural material for three mesh levels. 

l   Level 0 Level 1 Level 2 

Volume constraint  

C   

0.2V   

35,000 /m m   

0.1V   

32,500 /m m   

0.05V   

31,250 /m m   

 

 

 

For a multilevel problem, the resulting layouts for three levels are shown in 

Figure 3.5. The level 0 mesh problem is solved until the solution is feasible which means 

that the maximum constraint violation vanishes. The design solution is then transferred to 

the level 1 mesh where the process continues for 50 iterations after the solution becomes 

feasible once again. The level 1 solution is then transferred to the level 2 mesh where 
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optimization iterations continue until an optimum is achieved. The reason for using 

different stopping criteria on the lower level meshes is that goal on the lower level 

problems is to take out most of the material from the domain and show a very general 

material arrangement. In other words the coarse mesh problems are only auxiliary and 

their results don’t need to be highly accurate. Accordingly the stopping criterion of 

feasibility on the lower levels can reduce the optimization time. Figure 3.5 shows that the 

resulting layouts on each level clearer are getting clear with mesh refinement  The actual 

material layout ends up with a through arch bridge.

http://www.iciba.com/auxiliary
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Figure 3. 5: Layout solutions with multi-level refinement. (a) Level 0: Starts with solid design; runs until feasible. (b) Level 1:  Starts 
with level 0 resulting design; runs 50 iterations after problem being feasible. (c) Level 2: Starts with level 1 resulting 
design; runs until optimal design achieved. 
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Figure 3. 6: Comparison: Multilevel solution and single level solution for level 2 mesh.  
(a) Multilevel problem: Starts from level 1 resulting design and continues to 
optimality; (b) Single level problem starts from solid design and continues to 
optimality.  

 

 

 

 

The multilevel solution from Figures 3.5 (c) is compared with a single level 

solution on the level 2 mesh in Figure 3.6. As can be seen from the comparison, two 

layout results achieved very similar structures. They are basically layouts of a 

compression arch with a slender deck passing through. The single level solution has more 

tensile members above the center of the deck. In addition, the arch in multilevel solution 

has a larger radius of curvature which is about 50 meters larger than that in single level. 

The rise of the arch in the multilevel solution is smaller than that of single level solution 

and thus has a larger span to rise ratio. From Table 3.2 shown as follow, it can be found 

that the object function values are pretty close. This similarity indicates that the method 
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of multilevel algorithm implementation in optimization has a very slight influence on the 

resulting layouts. 

 

Table 3. 2: Objective functions for multilevel solution and single level solution 

Problem Type Objective function value  oF kN m   

Multilevel problem 3.11E+05 

Single level problem 3.27E+05 
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Figure 3. 7: Results curves: objective function history with respect to iteration counts. 

omF  and osF  represent objective function for multilevel solution and single 

level solution. 

 

Figure 3.7 shows objective function value curves for both multilevel case and 

single level case. To better evaluate, the logarithm of objective function value with the 

base of 10 is used for showing smoother curves. During the process of iteration, osF  and 

omF start from a same point which is a corresponding oF  value based on a complete solid 

design. Then curve of osF goes higher than that of omF  which is caused by different 

volume restrictions in two cases. As the designs gradually get to converge, the gap 

between those two curves narrows. Eventually two function values stabilize and the 

curves stay very close to each other. The reason is that multilevel level 2 problem is 

solved with a volume restriction same as the one in single level problem. Around 
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iteration 20, each curve is having a peak which reflects that those two cases may 

experience a similar problem of optimization computation.  

By taking a close look at osF  curve, one can find out that the curve keeps going 

up until iteration 110, though the goal of the problem is to find a minimum cost function 

in which a decreasing value is prefered. This is because the problem is having an initial 

design of whole solid structure over the design region, which possesses a stiffer structural 

behavior but not satisfies the volume constraint. Thus, in the first place of the iteration, 

the computation works on taking out material to make the problem feasible, however, 

which would result in a decreasing of the stiffness (an increasing of the compliance) in 

the structure. As the curve reaches a peak (feasible peak), the problem gets feasible and 

the computation aim turns to find a minimum cost function value. It also well illustrate 

the appearance of three feasible peaks in curve omF . Multilevel problem is solved on 

three levels of mesh thus experiences feasible for three times. 

Besides, around iteration 70 and 140, curve of omF  experiences significant jumps, 

however, there is no such fluctuation for osF . Instead, the curve for osF  is very smooth 

around that period of iterations. It is obvious that this period is the beginning of level 1 

mesh optimization. And  another period from iteration 140 to 170 being the beginning of 

level 2 mesh optimization are also experiencing oscillations in the cost function. During 

these two period, two conditions change when a coarse mesh problem goes into a finer 

mesh problem. One is the volume constraint upper bound which reduced by half; and 

another is the total elements in the design domain which would quadruple. By taking a 

close look at the objective function： 

1

2

extM  f u  
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Where ext
f   is a constant in the problem and would not change by neither the smaller 

volume constraint upper bound nor the total element number. While displacement 𝒖 

would increase in the first iteration in a new level computation for the reason that finer 

mesh helps reducing the finite element error. In finite element analysis, the displacement 

being calculated in coarse mesh would underestimate the actual situation. After each 

refinement step, the error in a fine mesh is strictly smaller than the error in a coarse mesh. 

It well illustrates the jump performance in om iterF N  curve. 

To verify the influence caused by the changing in volume restriction, additional 

optimizations are solved in level 0 and level 1 mesh problems with a volume constraint 

upper bound of 5%V which is same as the one in level 2 problem. However the 

oscillations remain. It proves that the mesh refinement is the cause of this problem. 

 

3.3 Total analysis time 

If it is certain that problem using multilevel algorithm can result in convincing 

design layout, then how efficient can it work to help with the reduction of computation 

costs? Here a time counter is added to problem. The total computation time is consists of 

time used for finite element analysis, the solution of SLP, and system connection. Since 

system connection time are variable in different conditions and SLP optimization time 

doesn’t have obvious change by element number, the summation of finite analysis time in 

each iteration is recorded in this study to make a comparison between two problems 

shown in Table 3.3. Where e  N  and iterN   represent the number of element and iteration 

needed in each problem respectively. at  and avet   with the unit of seconds are the 

summation of finite analysis time and the average time in one iteration. 

It is important to notes that iterN  and at  for single level case are the exact iteration 

and time taken in each level computation; however for multilevel case, iterN  and  at  are 

entered as the total time and iteration needed since the optimization starts from a solid 
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design (from level 0 ) instead of the one needed in each level computation. The 

computations were performed on a computer with a 3.4 GHz CPU and 16 GB memory. 

 

 

 

Table 3. 3: Problem computation comparison 

l   e  N  Single level Multilevel 

iterN  at  avet  iterN  at  avet  

Level0 1800 70 5.42 7.75E-02 70 5.42 7.75E-02 

Level1 7200 90 50.8 5.65E-01 140 17.4 1.24E-01 

Level2 14400 256 

 

359 
1.40E+00 

275 111 
4.07E-01 

 

 

 

In single level case, level 0 and level 1 problems stopped iterating when optimal 

points achieved, while in multi-level case, level 0 problem ran till the design is feasible 

and level 1 iteration stopped 50 iterations after problem feasible. It can be found that even 

though multilevel problems did less work on the progress to achieving optimal design, 

the number of iteration needed is close to or even greater than that in single level 

problem.  

Since iteration number needed is a minor concerned aspect and it is the analysis 

time that is sensitive to the computational intensity, more results analysis is made based 

on computational time. The level 0 computations for both cases are exactly the same 
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since they all started form a solid design. The refinement began in level 1. In this level, 

avet  of single level case is over 4 times as that of multi-level case. And in the next level, 

single level case analysis time is 359.065 seconds which is about 3 times as the time 

multi-level problem needed. The time saving is over 240 seconds. From those data, it is 

convincing that by using multilevel algorithm together with reduction method, 

computational effort saving is remarkable. When dealing with a very fine mesh or a 3d 

problem, the computational costs would increase dramatically. However in those 

problems multilevel refinement would show higher performance which can bring out 

considerable computation saving. 

 

3.4 Perimeter constraint 

To alleviate the mesh-dependency problem and the checkerboard patterns in this 

canyon bridge problem, additional optimization problems are solved with a perimeter 

constrain enforced. Thus the problem can be stated as: 

 
1

min ,
2

ext

b
M
 

 
 

u b f u      

Subject to,           (3.16) 

1 solidg 0C          

 2g P 0uP  b       

Where,  P b  represents the perimeter of the design structure; uP   represents the 

upper bound constraint value on the design perimeter. Apparently, the smaller the upper 

bound constraint value is, the coarser design results would be attained.  
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Firstly, for the perimeter constraint, an upper bound of three times the design 

domain perimeter is introduced to the problem (  =3* =3* 1000+500 *2=9 00  0u domainP P

meters). The design result for level 2 mesh in single level solution is shown as follow:

 

 

 

 

Figure 3. 8: Single level: Level 2 mesh with perimeter constraint. 
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Table 3. 4: Single level: level 2 mesh with perimeter constraint of 3* domainP  ; starting 

from a solid structural design initially. 

 

 

 

 

The numerical results above show that the structure compliance reach a value of 

32.7 with only one constraint function value nearly zero, however the perimeter 

constraint function with value of -1230 is far from feasible. In an optimization problem, 

in order to alleviate the numerical instabilities efficiently,  an active perimeter constraint 

function is strongly expected.  

   2g =P 1230uP  b b       (3.17) 

   2P =g + 7770uP b b      (3.18) 

 A structure design perimeter of 7770 meters smaller than the upper bound  uP  

(9000 meters) is got, which means that the perimeter constraint function newly 

introduced does not restrict the design perimeter effectively. Thus, a tighter limit smaller 

than 7770 meters is needed. The perimeter constraint upper bound    uP  is then reduced 

from 9000 meters to 6000 meters which is two times the design domain perimeter. Since 

l  

 oF kN m  1 solidg C    2g P 0uP  b  

Single-level 3.27E+05 4.58E-16 -1.23E+03 
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the constants in the second constraint function is comparatively large with that in volume 

constraint. To better evaluate two constraint function values, two scalar constants, 

CVAL  and SVAL  are introduced to the perimeter constraint function. The new 

constraint function becomes: 

     2g P * SVAL CVAL b    (3.19) 

Where  SVAL =1.0 4E  ,   CVAL SVAL * 6. 4= 0uP E   

 4 4

2g 10 *P 6.0 10= * b     (3.20) 

The resulting layouts show as follow:  

 

 

 

 

Figure 3. 9: Single level: Level 0 optimization design. (a) Without perimeter constraint 
M= 6.32E+04. (b) With perimeter constraint M= 6.26E+04 
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Figure 3. 10: Single level:  Level 1 optimization design. a) Without perimeter constraint 
M= 1.61E+05. b) With perimeter constraint M=1.42E+05. 

 

Figure 3. 11: Single level: Level 2 optimization design: (a)Without perimeter constraint 
M= 3.27E+05. (b) With perimeter constraint M= 3.20E+05. 
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As shown above, the canyon bridge model was progressively refined in both 

direction uniformly. From Figures 3.9 (a) to 3.11 (a) shows the resulting layout solutions 

without perimeter constraint. The layout results in each level also feature non-convergent 

type design solutions due to having more complex designs in finer meshes around area of 

each end of the bridge deck. With an imposed perimeter constraint, the design solutions 

from Figures 3.9 (b)  to 3.11 (b) are free of the “islanding” and “layering. Besides, the 

results of low level coarse mesh are nearly identical to that of high level fine mesh which 

shown a mitigation of mesh-dependency. 

In Figure 3.12, the compression members supporting the deck (as signed with 

circle 1) tend to be simple and easy to interpret in the (a). And the supporting member 

signed with circle 2 is removed in design with perimeter control which makes the layout 

solution much easier to interpret and construct.  
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Figure 3. 12: Layout design detail comparison for single level solution level 2 mesh 
optimization. (a) With perimeter constraint (b) without perimeter constraint  

 

 

 

 

 

 

Table 3. 5: Results: problem design results. 

𝑙  oF kN m  
1 solidg C   C   2g P uP b   CVAL  

Level 0 6.26E+04 5.55E-17 20% 𝑉 1.11E-03 0.3 

Level 1 1.46E+05 3.20E-16 10% 𝑉 2.46E-04 0.55 

Level 2 3.20E+05 -1.73E-16 5% 𝑉 9.84E-04 0.6 
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For multilevel level 2 problem, an imposed perimeter constraint is introduced with the 

upper bound of two times the domain perimeter. The imposed constraint greatly 

increased the computation intensity and make it hard for the problem to converge. So 

convergence tolerance is loosed from 1.0E-7  to 1.0E-3 in this case. The results are 

shown in Table 3.6.  

 

 

 

Table 3. 6: Problem analysis comparison for level 2 with perimeter constraint. 

l  eN   Single level Multilevel 

iterN   at   avet   iterN  at  avet  

Level2 14400 320 421 1.32E+00 260 103.8 3.96E-01 

 

 

 

 

 

From Table 3.6, it can be found that multilevel method has superiority on solving 

time for problems with perimeter constraint too. The average iteration time for multilevel 

case is about one third as that of single level case.  

Compared to the data from Table 3.3, one can find that the analysis time for 

problems solved with or without perimeter constraint are close. However the clock time 

of problem solving for single level case is over 40 minutes long which is about 3 time as 

for the same problem without perimeter constraint. The reason is that SLP solving time 

increases a lot by adding another constraint.  
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In Figure 3.13 shows the resulting layouts of multilevel solution without and with 

perimeter constraint. Slight difference can be found between these two layouts which is 

unlike the single level case. 

 

 

 

 

 

Figure 3. 13: Resulting layout: Multilevel problem without and with perimeter constraint 
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Figure 3. 14 : Curves Comparison: multilevel problem level 2 optimization. 
mpcF  represents the logarithm of objective function value 

for multilevel problem with a imposed perimeter constraint. mnpF  represents the logarithm of objective function value for 

multilevel problem without perimeter constraint. 
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In Figure 3.14 shows two curves of multilevel level 2 optimization. One is 

computed with perimeter constraint, however the other one is not. Before iteration 158 

two curves are pretty close to each other, however in iteration 159 two curves separate at 

a steep peak. The value of 
mpcF   appears to be larger than that of 

mnpF  . After feasible 

peak around iteration 170, two curves stabilize but 
mpcF  is of a more moderate slope 

which means that it convergence slower than 
mnpF   does. The convergence feature of 

these two curves meets the fact that problem with perimeter constraint takes longer time 

and more iterations to convergence.  

Since curves for multilevel solution with and without perimeter constraint are 

having slightly difference, only curve of 
mpcF  is taken into consideration in the next 

comparison curve diagram. In Figure 3.15, two single level level2 solution curves with 

the difference of with or without perimeter constraint are added. From the iteration 

beginning to iteration 40, curves of 
spcF   and 

snpF   almost coincide with each other. After 

iteration 40 the rising trend for 
spcF  becomes slower than that of

snpF . This phenomenon 

can also illustrate that perimeter constraint would slow down the optimization process. 

Then two curves reach their feasible peaks which sharing a same value, at iteration 103 

and 152 respectively. Although as Figure3.16 shown two curves goes to a close value 

after the peaks,  
spcF  curve still has some un-neglected oscillations which makes it takes 

many more iteration to converge. 
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Figure 3. 15: Curves Comparison under three situations. 
snpF  represents the logarithm of objective function value for single level level 

2 solution without perimeter constraint. 
spcF  represents the logarithm of objective function value for single level level 2 

solution with a imposed perimeter constraint.
mpcF  represents the logarithm of objective function value for multilevel 

solution with a imposed perimeter constraint. 
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Figure 3. 16: Corresponding structural design layouts for point a, b, c in Figure 3.16. (a) Single level level2 problem without perimeter 
constraint. Iteration 103. (b) Single level level 2 problem with perimeter constraint. Iteration 152. (c) Multilevel level2 
problem with perimeter constraint. Iteration 167. 
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Apparently at those three feasible peaks, three problems are experiencing a 

similar iteration progress. Their objective functions are all reaching the last maximum 

points before the curves go down and gradually approach the convergent value.  In 

Figure3.15, the structural layout designs at the final peak for three curves are shown. 

From those layout design, it can be found that the optimization completeness for 
mpcF  is 

ahead of the other two problem on the optimization process, for the reason that the 

structural design is very close to the one in the final design. There would be slight 

changes on this design in the further iterations before the problem converges. Since 

Figure 3.16 (a) the layout shows one more arch addition to the final design arch , the 

optimization completeness 
snpF   lists bottom.  
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CHAPTER 4 

 

SUMMARY AND FUTURE STUDY 

 

4.1 Layout result evaluation and case study 

 

La Vicaria Bridge is a through arch bridge in the Segura River, Spain. Although 

the lateral sides of the design boundary are slopes instead of vertical sides, the design of 

the arches and size proportion can provide ideas to better evaluate the topology 

optimization results. 

 The arches of La Vicaria Bridge span 168 m, of which 120 m is over the deck, 

with a 10° inward incline towards the deck. The rise is 49 m, of which 25 m is over the 

deck. The span to rise ratio is 3.4:1. This bridge is a steel structure (arch and deck) which 

is same as the material of computation model.  

http://en.wikipedia.org/wiki/Through_arch_bridge
http://en.wikipedia.org/wiki/Segura
http://en.wikipedia.org/wiki/Spain
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Figure 4. 1: La Vicaria Bridge, Albacete, Spain (Luis Martin-Tereso, 2008). 

 

 

 

Figure 4.2 shows the resulting layout in single level level2 solution. The topology 

optimization results in a through arch bridge with a single arch which spans 1000m which 

is much greater than La Vicaria Bridge in case study. And 490m of the span is over the 
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deck. The arch covers a circular segment of 76° and with a radius of 400m.The rise is 

350m, with 125m over the deck. The span to rise ratio is 2.9:1 and the elevation is about 

38°.  

Usually the arch bridge has an average span of 40m to 500m. For example, 

Chaotianmen Bridge, China is the arch bridge with longest span of 552m. However, the 

result design shows a long span arch bridge of 1000m which would lead to big self-

weight and difficulty for construction. For a long-span bridge, buckling load is another 

crucial problem need to be considered except for structural stiffness. So by considering 

buckling load in this optimization, the optimization problem would come out more 

practical layout designs. 
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Figure 4. 2: A layout of structural design. 

 

 

 

4.3 Conclusion 

In this study, we attempted to reduce the computational intensity by applying both 

a multilevel algorithm and a reduction method. The proposed techniques are found in this 

study to reduce the computational effort required by a factor of about 3. Multilevel 

algorithm provides a considerable saving of computation effort and iteration time.  

Besides, the results solving by a multilevel problem shows great similarity with the ones 
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solving by a traditional single level problem. This proves the reliability for multilevel 

method. 

 

4.3 Future Study 

First of all, a finer mesh layout result is needed for the reason that the single 

element with the side of 4.2 meters is still quite large in size. Usually one single lane in 

highway is 3.6 meters (12 feet) which is smaller than the element in level 2 problem. If 

one element results in solid in an optimization problem, there would be an area of 4.2m 

by 4.2m (17.64m2) or a three dimensional space of 74 m3 in solid. However, by taking 

the main cable of the golden bridge as an example, the diameter is 0.92 m. It is obvious 

that the level 2 mesh is much too coarse to show a clear view of structural components in 

a bridge. Thus optimization computation on several higher level meshes are in great need 

to provide a much finer structural layout results. 

Second, two dimensional results cannot satisfy the actual design demand, so 3D 

canyon bridge problem is another study that could be done in a further work. As for 

solving a three dimensional problem, the number of element would be increased 

exponentially when refine into a higher level design. For instance, assumes that 3D level 

0 bridge model can be 2D problem extruding 80 meters in z direction, then it would have 

60*30*5 (9000) elements. As for a 3D level 1 problem, the number of element in each 

direction should multiply by 2, then there would be 72,000 elements totally which is 

about 10 times as the elements for a 2D level 1 problem. 3D level 2 problem where 

computation intensity already appears during the solving process exists 576,000 elements 

which is 20 times as the elements in corresponding 2D problem. The multilevel algorithm 

can help a lot in saving the computational efforts in solving 3D problems. 
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